本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。
Facebook在PyTorch开发者大会上正式推出了PyTorch 1.3,并宣布了对谷歌云TPU的全面支持,而且还可以在Colab中调用云TPU。
之前机器学习开发者虽然也能在Colab中使用PyTorch,但是支持云TPU还是第一次,这也意味着你不需要购买昂贵的GPU,可以在云端训练自己的模型。
而且如果你是谷歌云平台(Google Cloud Platform)的新注册用户,还能获得300美元的免费额度。
现在PyTorch官方已经在Github上给出示例代码,教你如何免费使用谷歌云TPU训练模型,然后在Colab中进行推理。
训练ResNet-50
PyTorch先介绍了在云TPU设备上训练ResNet-50模型的案例。如果你要用云TPU训练其他的图像分类模型,操作方式也是类似的。
在训练之前,我们先要转到控制台创建一个新的虚拟机实例,指定虚拟机的名称和区域。
如果要对Resnet50在真实数据上进行训练,需要选择具有最多CPU数量的机器类型。为了获得最佳效果,请选择n1-highmem-96机器类型。
然后选择Debian GNU/Linux 9 Stretch + PyTorch/XLA启动盘。如果打算用ImageNet真实数据训练,需要至少300GB的磁盘大小。如果使用假数据训练,默认磁盘大小只要20GB。
创建TPU
官方建议初次运行时使用假数据进行训练,因为fake_data会自动安装在虚拟机中,并且只需更少的时间和资源。你可以使用conda或Docker进行训练。
在fake_data上测试成功后,可以开始尝试用在ImageNet的这样实际数据上进行训练。
用conda训练:
用Docker训练:
在n1-highmem-96的虚拟机上选用完整v3-8 TPU进行训练,第一个epoch通常需要约20分钟,而随后的epoch通常需要约11分钟。该模型在90个epoch后达到约76%的top-1准确率。
为了避免谷歌云后续进行计费,在训练完成后请记得删除虚拟机和TPU。
性能比GPU提升4倍
训练完成后,我们就可以在Colab中导入自己的模型了。
打开notebook文件,在菜单栏的Runtime中选择Change runtime type,将硬件加速器的类型改成TPU。
先运行下面的代码单元格,确保可以访问Colab上的TPU:
然后在Colab中安装兼容PyTorch/TPU组件:
接下来就可以导入你要训练好的模型和需要进行推理的图片了。
在PyTorch上使用TPU对性能的提升到底有多明显呢?官方选用了v2-8的一个核心,即1/8 TPU的情形,与使用英伟达Tesla K80 GPU进行对比,实测显示推理时间大大缩短,性能约有4倍左右的提升。
GitHub地址:
https://github.com/pytorch/xla/tree/master/contrib/colab
【责任编辑:张燕妮 TEL:(010)68476606】